Multivariate Prediction Based on the Gamma Classifier: A Data Mining Application to Petroleum Engineering
نویسندگان
چکیده
A novel associative model was developed to predict petroleum well performance after remedial treatments. This application is of interest, particularly for non-uniform oilfields such as naturally fractured ones, and can be used in decision support systems for water control or candidate well selection. The model is based on the Gamma classifier, a supervised pattern recognition model for mining patterns in data sets. The model works with multivariate inputs and outputs under the lack of available data and low-quality information sources. An experimental dataset was built based on historical data of a Mexican naturally fractured oilfield. As experimental results show, this classifier-based predictor shows competitive performance compared against other methods.
منابع مشابه
Prediction of the main caving span in longwall mining using fuzzy MCDM technique and statistical method
Immediate roof caving in longwall mining is a complex dynamic process, and it is the core of numerous issues and challenges in this method. Hence, a reliable prediction of the strata behavior and its caving potential is imperative in the planning stage of a longwall project. The span of the main caving is the quantitative criterion that represents cavability. In this paper, two approaches are p...
متن کاملEvaluation of Classifiers in Software Fault-Proneness Prediction
Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one ...
متن کاملSeismic Data Forecasting: A Sequence Prediction or a Sequence Recognition Task
In this paper, we have tried to predict earthquake events in a cluster of seismic data on pacific ring of fire, using multivariate adaptive regression splines (MARS). The model is employed as either a predictor for a sequence prediction task, or a binary classifier for a sequence recognition problem, which could alternatively help to predict an event. Here, we explain that sequence prediction/r...
متن کاملStudying Peak Particle Velocity Due to Blast in Development Tunnels’ Face in Coal Stoping
The impact of blast-driven shocks on the safety and stability of the underground coal mines has been well established. The seismic imperfections resulting from blasting depend on the total explosive energy released during blasting and the closeness of the development tunnel face to the stope face. Also, the quality of the rock mass wherein the whole stope face is located might pose considerable...
متن کاملCombined application of computational fluid dynamics (CFD) and design of experiments (DOE) to hydrodynamic simulation of a coal classifier
Combining the computational fluid dynamics (CFD) and the design of experiments (DOE) methods, as a mixed approach in modeling was proposed so that to simultaneously benefit from the advantages of both modeling methods. The presented method was validated using a coal hydraulic classifier in an industrial scale. Effects of operating parameters including feed flow rate, solid content and baffle le...
متن کامل